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Lung cancer is an aggressive disease among all cancer-based diseases, because of causing huge
mortality in humans. Thus, earlier discovery is a basic task for diagnosing lung cancer and it

helps increase the survival rate. Computed tomography (CT) is a powerful imaging technique

used to discover lung cancer. However, it is time-consuming for examining each CT image. This
paper develops an optimized deep model for classifying the lung nodules. Here, the pre-pro-

cessing is done using Region of Interest (ROI) extraction and adaptive Wiener ¯lter. The

segmentation is done using the DeepJoint model wherein distance is computed with a con-

gruence coe±cient for extracting the segments. The nodule identi¯cation is done by a grid-based
scheme. The features such as Global Binary Pattern (GBP), Texton features, statistical fea-

tures, perimeter and area, barycenter di®erence, number of slices, short axis and long axis and

volume are considered. The lung nodule classi¯cation is done to classify part solid, solid nodules
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and ground-glass opacity (GGO) using Deep Residual Network (DRN), which is trained by the

proposed Shu²ed Shepard Sine–Cosine Algorithm (SSSCA). The developed SSSCA is gener-

ated by the integration of the Sine–Cosine Algorithm (SCA) and Shu²ed Shepard Optimization

Algorithm (SSOA). The proposed SSSCA-based DRN outperformed with the highest testing
accuracy of 92.5%, sensitivity of 93.2%, speci¯city of 83.7% and F1-score of 81.5%.

Keywords : Computed tomography images; DeepJoint model; Deep Residual Network; grid-
based scheme; lung nodule classi¯cation.

1. Introduction

Lung cancer is an aggressive disease among all cancer-based diseases, because of

causing huge mortality in humans, and the standard ¯ve-year rate of survival in the

patient is lesser than 20%, even though there exist beleaguered diagnoses and several

chemotherapies and radiotherapy regimens. The average time of survival for a pa-

tient with advanced lung cancer is 12 months.16 Thus, earlier discovery, earlier

treatment and earlier diagnosis of lung cancer can e±ciently enhance the quality of

life and rate of survival of the patients. A smudge on the lung computed tomography

(CT) image is described as a lung nodule (LN) that can be either malignant or

benign. Earlier lesions of the lung are mostly characterized by spiteful nodules in the

lungs. Thus, it is essential for scienti¯c treatment of lung cancer for classifying the

nodules of the lung in a precise manner. Recently, the enhancement of health levels

and development of medical facilities have gained popularity among the research-

ers.10,27,28 Several subtle lesions can be accumulated by an imaging tool. Among

them, CT is known to be the most e®ective tool, which can discover lung cancer

earlier. Doctors are required to treat malignant nodules by precisely reading the CT

image, but reading a huge number of CT images takes more time, and thus there

exists a large probability for misdiagnosis. Due to the design of information tech-

nology, computer-based detection modules using CT have provided e®ective out-

comes.2,29 Among several diseases, lung cancer is an abandoned design of cells in an

unequivocal region.11

Cancer in the lung is identi¯ed through the existence of nodules, which reveal the

stage of the problem being examined.12 It can be di®erentiated at the starting phase,

due to the existence of only fewer pulmonary nodules, and distinct methods are used

for identifying whether it is a cancerous nodule or the starting phase. The nodules

contained in the lungs help to detect lung tissue alterations considering the norm,

which is commonly circular ¯t with the dimension of mm. The human body contains

various cells. Whenever cells expand to the exterior lung, then the nodule of the lung

is generated. Some prejudiced settings within 3mm are termed as miniaturized and

those exceeding 3mm are termed as mass. They are considered cancerous and must

be detected at the right time. Generally, the nodules are de¯ned in two formats

including benign or mass. If the dimension of the nodule is 3 cm or lesser, then it is

known as pulmonary. The shape of lung nodules is usually round and they are

perplexing when included within an anatomical model. Identi¯cation of the position
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of LN can be a complex task, and it is complex to separate as well. There exist various

techniques for portraying LNs by densitometry, their development, size and mor-

phology. In recent days, various methods are devised for segmenting the lung and

detecting the nodules, and techniques have been developed for nodule segmentation

and recognition.7

Deep Neural Network (DNN) has been extensively utilized in the processing of

images with better outcomes; this ¯eld was worth 300 million USD by 2021, but there

are two main issues of deep learning including scalability and usability.13 The input

to DNN has manually mined features using di®erent hidden layers. Deep learning

considering chest radiology is an active research domain recently.32,33 Various models

are utilized including Recursive Neural Network (RvNN),14 Convolutional Neural

Network (CNN),25,31 Recurrent Neural Network (RNN), Variational Autoencoder

(VAE), Deep Boltzmann Machine (DBM), Generative Adversarial Network

(GAN),17 Deep Belief Network (DBN),15 Autoencoder, Stacked Autoencoder and

Deep Residual Network (DRN).16,26 Some of the deep learning methods are illus-

trated as follows. RNN associates the nodes, using a directed graph, and memorizes

prior inputs for predicting the output. RvNN is an extraordinary case of RNN that

applies a similar group of weights for structured input.30 Both RNN and RvNN

are utilized for natural language processing. DBN represents a deep network with

several associated hidden layers and the units of layers are also associated. Deep

Boltzmann Machine is comparable to DBN but poses undirected links among the

hidden layers.

1.1. Motivation

Cancer in the lung is identi¯ed through the existence of nodules, revealing the stage

of the problem being examined. The major cause is the formation of cancerous

nodules around the lungs. Thus, an earlier discovery of nodules is essential. Various

methods are devised for lung nodules segmentation and recognition. The problems

encountered in the conventional approaches are given as follows:

. In several cases, it is complex to arrive at an accurate treatment because of the

complex morphological model of nodules.4

. It is di±cult to identify the morphological di®erence between the earlier-phase

cancerous nodule and benign nodule.

. Some important features are not considered for the nodule segmentation, which

a®ects the accuracy of the model.

The aforementioned issues and challenges are taken as motivation for designing a

new method to classify lung cancer using CT images.

The main aim is to design an approach for lung nodule detection using an opti-

mization-based deep learning technique. First, the inputted CT image is fed to
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pre-processing in which the Region of Interest (ROI) extraction and adaptive Wiener

¯lter are applied to discard noise. The segmentation of the lung lobe is done with

DeepJoint to accurately segment regions of the lung lobe where the distance is

computed based on the congruence coe±cient. After the lung lobe segmentation, the

nodule identi¯cation is carried out using a grid-based scheme. The next phase is the

extraction of features like Global Binary Pattern (GBP), Texton features, perimeter

and area, barycenter di®erence, number of slices, volume, short axis and long axis

and statistical features being considered for the enhanced process. After feature

mining, the extracted features are subjected to lung nodule classi¯cation where the

nodule region is classi¯ed into ground-glass opacity (GGO), part solid and solid

nodules with DRN, which is trained with the proposed Shu²ed Shepard Sine–Cosine
Algorithm (SSSCA). The SSSCA is developed by integrating Shu²ed Shepard

Optimization Algorithm (SSOA) and Sine–Cosine Algorithm (SCA).

The major contributions of the paper are as follows:

. Proposed SSSCA-based DRN for lung nodule classi¯cation: The proposed SSSCA-

based DRN is utilized for classifying the lung nodules into GGO, part solid and

solid nodules. The DRN training is done with the devised SSSCA, which is

developed by combining SSOA and SCA.

The remaining sections are organized as follows: Section 2 de¯nes the conven-

tional lung nodule classi¯cation models. Section 3 presents the proposed model for

lung nodule classi¯cation. Section 4 de¯nes the e±ciency of the proposed technique.

Section 5 o®ers the conclusion.

2. Literature Survey

The eight conventional lung nodule classi¯cation methods are described with their

advantages and disadvantages. Kuo et al.1 developed a technique for classifying the

lung nodules into solid nodules, part solid and GGO using CT images. Here, the edge

searching method was utilized for segmenting the lungs. To mine the nodules with

distributed gray levels, the accumulation of images was utilized for enhancing the

nodules to improve the gray level of each of them. Support Vector Machine (SVM)

was utilized for classifying the lung nodules. However, the SVM required more time

for optimizing the kernel function. Wu et al.2 utilized a DRN for classifying the lung

nodules using the CT images. Here, the ResNet network structure was utilized to

enhance the image. Then, the DRN was utilized by integrating migration learning

and residual learning. The degradation of network e±ciency is a major issue, due to

the huge network depth. Wang et al.3 utilized CNN with CT images for the lung

nodules classi¯cation. Here, the raw CT image patches were integrated with CNN for

reducing the system complexity. Also, the CT image was split into various patches

that were divided into six kinds. However, the method failed to classify malevolent

nodule types. El Hassani et al.4 developed Discrete Cosine Transform (DCT) with
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CNN for e®ective categorization of lung nodules. Here, the DCT and CNN were

integrated for providing enhanced accuracy. However, the nonnodule regions were

complex to detect which a®ected the performance of classi¯cation. de Nobrega et al.5

utilized deep transfer learning to classify cancer. Here, 1 018 chest CT examinations

were utilized for medical annotations. Also, seven CNNs were constructed using the

ImageNet dataset. Then, each group of deep features was utilized for classi¯cation.

However, this technique did not automatically segment lung nodules. Huang et al.6

developed Deep Transfer Convolutional Neural Network (DTCNN) and Extreme

Learning Machine (ELM) for classifying lung cancer. Here, the optimum DTCNN

was employed for mining the features to train ImageNet. Then, ELM was utilized to

categorize benign and malignant lung nodules. However, the memory consumption of

this method was very high. Veronica7 designed a technique for classifying lung

nodules using CT. Here, the precise portion of the lung image was achieved and fed to

pre-processing in which the level of image contrast was improved by adjusting the

function. Also, the nodules were segmented with Fuzzy C-Means (FCM) for e®ectual

nodule classi¯cation. If the sizes of the nodules were too small, then it may result in

wrong classi¯cation outcomes. Zhang and Kong8 developed a Multi-scene Deep

Learning Framework (MSDLF) for the e®ectual classi¯cation of lung nodules. Here,

a CNN was utilized for improving the knowledge of radiologists in determining

the four-phase nodules. The method was e®ective and increased the accuracy, but the

speed of processing was very high.

2.1. Challenges

The problems confronted by the conventional lung nodule classi¯cation methods are

enlisted as follows:

. In Ref. 6, the DTCNN–ELM method was developed for classifying the lung

nodules using CT images. However, the major issue is the examination of various

transfer learning methods and ELM structures for making them robust.

. In Ref. 7, the major goal of the technique was to enhance the accuracy of classi-

¯cation by mining some speci¯c features of lung images.

. In several cases, it is complex to arrive at a precise treatment because of the

complex morphological model of nodules.4

. In Ref. 3, the CNN was utilized for detecting the nodules of lungs, but the de¯-

ciency of huge training sets of lung nodules and low sensitivity were the issues.

Hence, the important issue is the reliance of CNN on huge training sets.

. The major issue in determining lung cancer is categorizing benign nodules and

cancerous lesions, which are detected by noninvasive and invasive techniques.

Thus, there is a requirement for a sophisticated deep learning method for identi-

fying the morphological di®erence between earlier-phase cancerous nodules and

benign nodules.
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3. Proposed SSSCA-based DRN for Lung Nodule Classi¯cation

Cancer is a major disease about which people are speci¯cally concerned nowadays.

The major cause is the formation of cancerous nodules around the lungs. Thus the

earlier discovery of nodules is essential. The aim is to present an approach for

detecting lung nodules considering the optimization-based DRN. First, the input CT

is subjected to the ROI extraction phase with an adaptive Wiener ¯lter. The seg-

mentation of the lung lobe is performed using the DeepJoint model19 for precisely

segmenting the regions of the lung lobe in which the distance is computed using the

congruence coe±cient. With a segmented lung lobe, the nodule identi¯cation is done

with a grid-based scheme. Certain features like GBP, Texton features, statistical

features, perimeter and area, barycenter di®erence, number of slices, short axis and

long axis and volume are adapted for improved processing. After the feature ex-

traction phase, the obtained features are subjected to lung nodule classi¯cation

where the nodule region is classi¯ed into GGO, part solid and solid nodules with

DRN,20 which is trained using SSSCA. The SSSCA is devised by combining SSOA21

and SCA.22 The architecture of lung nodule detection using the proposed

SSSCA-based DRN is displayed in Fig. 1.

Fig. 1. Architecture of lung nodule classi¯cation using the developed SSSCA-based DRN.
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Table 1. Symbols table.

r Total number of images
Q Database

Is The sth input image

J Windows length

K Windows width
L Inputted image value chosen in the window size

l1; l2 Original image coordinates selected from the window size

B Original image
m2 Noise variance

Is Pre-processed image

mf The fth grid

g Total grids

Gn Values of pixel linked to grid Mj

I Count of pixels in grid Mj

� Threshold

Fg Value of mean

Gx
w Joined pixels in speci¯c grid mg

D Total joined pixels in fg
t Number of mapped points

#l Missed pixel

� Total missed pixels
C Output produced from DeepJoint model

E Region of nodule segment

a2 Gradient in horizontal direction
a4 Gradient in vertical direction

a1; a3 Gradients with diagonal directions

ðu;wÞ Pixel location

V1;V2;V3;V4 Values of pixels
P ¼ ðc; dÞ Position of pixel

W1;W2;W3;W4;W5 Five pixel values

O�N Total pixel positions

sðu;wÞ Position of sth pixel
k Block area or count of pixels

� Count of pixels length

! Short axis of object
# Long axis of object

$ Coordinate of barycenter point of object

s Area of object

nði; jÞ Gray-scale value of image at the coordinate ði; jÞ
z Di®erence of barycenters

$1 Barycenter of pre-image

$2 Barycenter of current image

$3 Barycenter of post-image
R1 GBP features

R2 Texton features

R3 Mean

R4 Variance
R5 Standard deviation

R6 Kurtosis

R7 Skewness
R8 Perimeter and area

R9 Short axis and long axis
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Initially, the inputted images are accumulated for lung nodule classi¯cation.

Consider a dataset Q with R images that is represented as

Q ¼ I1; I2; . . . ; Is; . . . ; Ir: ð1Þ
Hence, the image Is is subjected to pre-processing to eliminate noise contained

in it.

Table 1. (Continued)

R10 Barycenter di®erence

R11 Number of slices

R12 Volume
M CNN feature

ðx; yÞ Record coordinates

G E �E kernel matrix

a; s Position indexes
Gz Kernel size for zth input neuron

� Cross-correlation operator

ain Input matrix width
sin Input matrix height

aout; sout Values of output

Za Kernel size width

Zs Height of kernel size
K Feature

M Residual block input

N Residual block output

< Residual function
�m Dimension matching factor

� Weight matrix

� Bias
Y Output of DRN

U 0
x Initial solution vector of xth sheep

Umax;Umin Bounds of design variables

rand Random vector in [0,1]

j Number of sheep
�f Output to be expected

Ux;Uo;Ua Solution vectors of shepherd chosen, horse and chosen sheep in m-di-

rectional search space

�; 	 Parameters

U temple
x Temple solution vector

U old
x Old solution vector

�x Step size
UðzÞ Current solution

d1; d2; d3 Random numbers

QB Current position of destination point
jj Absolute value

c True positive

e True negative

f False positive
d False negative
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3.1. Pre-processing to discard noise

Pre-processing helps in converting unstructured data into structured one. Further-

more, it helps to smooth the distortions and enhance features of the image that assist

in improved processing. Thus, the image is subjected to pre-processing which is

termed an imperative step in computing data. The implication of pre-processing is to

provide enhanced processing.

(i) ROI extraction. ROI is discovered with pixel intensity values using resultant

masking. The process of scrambling concerned regions with uninteresting ones is

performed in this step. Whenever the user de¯nes a gray-scale intensity value using

the dependent regions and beneath section expresses background, then the image is

expected to fall within the threshold known as thresholding. The intensity values of

ROI are considered as density slices in which the adjacent discovery of pixels has a

value of either 1 or 0.

(ii) AdaptiveWiener ¯lter. The adaptive Wiener ¯lter1 utilizes an image noise

¯ltering technique for discarding the noises that came from manual operation,

vibration of the machine and image reconstruction defects from the input image.

This optimizes the image and helps to judge the position of the object and contour

in a precise manner. The Wiener ¯lter can e®ectually keep the edge of the image

and minimize the noise from the ¯lter in which the estimation is done using variance

and regional average for replacing the gray level. Here, the regional average is given

as

e ¼ 1

JK

X
l1;l22L

BðL1;L2Þ: ð2Þ

The variance is given as


2 ¼ 1

JK

X
l1;l22L

B2ðl1; l2Þ � e2: ð3Þ

The coordinates are given as

F ðl1; l2Þ ¼ eþ 
2 �m2


2
ðBðl1; l2Þ � eÞ: ð4Þ

Thus, the pre-processed image Is is fed as an input to the segmentation module.

3.2. Segmentation of lung lobe using DeepJoint model

The pre-processed image Is is fed as an input for segmentation of the lung lobe

performed with the DeepJoint model19 by evaluating the optimum values of

threshold. Here, Is is given to DeepJoint that identi¯es the best segments. The steps

undergone are described in the following:

Step 1 (Grids con¯guration). First, the image is divided into various grids

wherein the grid size is employed as 2� 2. The split grids are produced with
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pre-processed image, and denoted by

M ¼ M1;M2; . . . ;Mf ; . . . ;Mg: ð5Þ
Step 2 (Joining phase). After grid generation, the pixels through intra-grid

points are integrated using the threshold and mean. The average values are com-

puted as

Mj ¼
P I

n¼1 Gn

I
: ð6Þ

The joining pixels are formulated as

Mj ¼
P I

n¼1 Gn

I
� �: ð7Þ

Step 3 (Region fusion phase). The region fusion matrix is generated by

adapting the allocated grids. The region fusion is carried out using two conditions

that must be ful¯lled and are expressed as follows:

(i) Fg should be lesser than 3.

(ii) Then selection of a single grid point for each grid is performed.

From the aforementioned conditions, the similarity of the region is discovered and

these regions are integrated for discovering the mapped points. The region similarity

is given by

Fg ¼
PD

w¼1 G
X
w

G
: ð8Þ

The grid which is integrated is known as mapped points, and is given by

F ¼ F1;F2; . . . ;Fu; . . . ;Ft: ð9Þ
Step 4 (Determination of deep points). The deep points are determined by

adapting the missed pixels. The residual pixels are termed as missed pixels, and are

given by

E ¼ #l; 1 < l � k: ð10Þ
Thus, the deep points are computed as

Kpoints ¼ "þ lp: ð11Þ
Step 5 (Acquisition of best segment). Finally, the best segment is discovered

using the deep points by using an iterative technique. Hence, the minimal distance

based on the congruence coe±cient is given by

P dist ¼
P20

q¼1 AbE point qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP20
q¼1 ðAbÞ2

P20
q¼1 ðE point qÞ2

q : ð12Þ
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The output produced from the DeepJoint model is the lung lobe segments, which

are denoted as C and from each segment, the nodules are identi¯ed.

3.3. Nodule identi¯cation using grid-based scheme

Once C is obtained, the lung nodule identi¯cation is done by adapting the grid-based

scheme. Here, it can be e®ectually determined whether the region of the nodule is

a®ected or not. A grid-based scheme is applied on C to divide the region of segments

into a number of blocks known as grids. For making the computation simple and to

reduce the time of computation, it is required to divide the segmented image into

di®erent blocks. Using the grid-based method, the segmented region is split into

various grids for determining the lung nodules. Thus, the region of the nodule is

discovered from the segmented image and is denoted by E.

3.4. Extraction of signi¯cant features

From E, the features are extracted from each segment. Here, the essential features

generated with segments and insinuation of mining are examined. The mining of

features is performed to generate relevant features for achieving enhanced lung

nodule classi¯cation. The features extracted with segments are described below.

Each feature mined using the segments is briefed here.

(a) Global Binary Pattern

It refers to texture operators particularly utilized in computer vision problems, like

classi¯cation of texture and background subtraction.23 It reveals each pixel consid-

ering the relative dim estimation of the neighboring pixel. The GBP reveals each

pixel with its relative gradient at several pixel locations. Assume the 1D masks as

½�101� and ½�101�T which are termed as a2 and a4. The gradients with diagonal

directions are evaluated by adapting two 2D masks as ½001; 000;�100� and ½�100;

000; 001� which are named as a1 and a3. Thus, the value of GBP using u;w is

expressed by

F3 ¼ �ðjja1ðu;wÞjj � jja4ðu;wÞjjÞ þ �ðjja3ðu;wÞjj � a4jjðu;wÞjjÞ2

þ �ðjja1ðu;wÞjj � jja2ðu;wÞjjÞ22 þ
X4
}¼1

�ða}ðu;wÞÞ27�}; ð13Þ

�ð}Þ ¼ 1; } � 0;

0 otherwise:

�
ð14Þ

Thus, GBP refers to the value of an integer which lies between 0 and 27 � 1. So,

the GBP feature poses a size of ½1� 50�, and is denoted as R1.

(b) Texton features

The Texton features24 adapted for feature extraction are given below. Consider there

are 2� 2 grids and the pixel values are expressed as V1, V2, V3 and V4. If the four

values of the pixels are the same, then these pixels are termed as Texton.
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Assume P ¼ ðc; dÞ at a similar position. Each Texton image unit contains a value

of the pixel and these units of Texton image contain ¯ve pixel values that are given

byW1,W2,W3,W4 andW5. If the ¯ve values of the pixels are the same, then the ¯nal

Texton image is placed with the original value in an equal position. Here, the Texton

feature is denoted as R2.

(c) Statistical features

The statistical features are used to accumulate, review and analyze the data to make

an e®ectual decision. The statistical features adapted for the assessment include

mean, variance, standard deviation, kurtosis and skewness.

(i) Mean

It is evaluated by summing the values of pixels from the image divided by the total

pixels. The mean of the sth pixel ðu;wÞ is evaluated as

R3 ¼
1

O�N

XO
u¼1

XN
w¼1

sðu;wÞ: ð15Þ

(ii) Variance

It refers to the spread of intensity values based on the value of the mean, and is

expressed as

R4 ¼
1

O�N

XO
u¼1

XN
w¼1

ðsðu;wÞ � R3Þ2: ð16Þ

(iii) Standard deviation

It refers to the second central moment which reveals the measure of inhomogeneity,

R5 ¼
1

O�N

XO
u¼1

XN
w¼1

ðsðu;wÞ � R4Þ2: ð17Þ

(iv) Kurtosis

The shape of the arbitrary variable probability distribution is indicated with kurtosis

which is given by

R6 ¼
1

ðR5Þ4
XO
u¼1

XN
w¼1

ðsðu;wÞ � R4Þ4: ð18Þ

(v) Skewness

It refers to the measure of symmetry, and is formulated as

R7 ¼
1

ðR6Þ3
XO
u¼1

XN
w¼1

ðsðu;wÞ � R5Þ3: ð19Þ

(d) Perimeter and area

It refers to the circle's circumference in a region. The long objects are

di®erentiated from huge or circular objects and the formula of perimeter and area1 is
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given by

R8 ¼
k

�
: ð20Þ

(e) Short axis and long axis

The short axis and long axis1 are utilized for di®erentiating between long and

rounded objects in which the long axis of the feature indicates the longest object

diameter and the short axis indicates the longest object diameter perpendicular to

the long axis, given as

R9 ¼
!

#
: ð21Þ

(f) Barycenter di®erence

The barycenter di®erence1 is utilized for computing the change of the value of gray

scale in the image. Each object present in the nodule is utilized for computing the

barycenters of pre-image, current image and post-image. The barycenter utilizes the

values of gray scale and weights, and thus the object barycenter is generated that is

given as

$ ¼
P

i;j2S nði; jÞ � iP
i;j2S nði; jÞ

;

P
i;j2S nði; jÞ � jP

i;j2S nði; jÞ
� �

: ð22Þ

The system discovers a minimum of e®ectual nodule contours, and thus the

successive barycentric coordinates are utilized for computing the di®erence that is

given as

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð$1Þ2 � ð$2Þ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð$2Þ2 � ð$3Þ2

p
: ð23Þ

The barycenter di®erence feature is expressed as R10.

(g) Number of slices

The number of slices1 is the count of slices contained in the segment. Here, too less or

too many slices means that the object is not a nodule and this feature is expressed

as R11.

(h) Volume

The volume1 is indicated as R12.

The feature vector formed considering the computed features is formulated as

R ¼ fR1;R2;R3;R4;R5;R6;R7;R8;R9;R10;R11;R12g: ð24Þ

3.5. Classi¯cation of lung nodules using the developed SSSCA-based DRN

The basic operation of classifying the lung nodules is performed using the developed

SSSCA-based DRN. The feature vector is considered as the input. Here, the training

of DRN is performed with the proposed SSSCA. The DRN structure and training of

SSSCA are discussed below.
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3.5.1. Architecture of DRN

The feature vector is o®ered as the DRN input. DRN20 is employed to make an

e®ectual decision concerning the identi¯cation of the class of lung nodule. The DRN

assists in improving the vanishing-gradient problems and also in reinforcing the

features propagation. It assists in reprocessing the features and reducing the count of

attributes. It is connected and generates accurate results.

Conv layer: It is used for minimizing free attributes in training and o®ers reim-

bursement for sharing the weights. The conv layer assists in processing the input

image considering the sequence of the ¯lter. The computation procedure of conv

layer is expressed as

B2dðMÞ ¼
XE�1

a¼0

XE�1

s¼0

Xa;s 	MðxþaÞ;ðyþsÞ; ð25Þ

B1dðMÞ ¼
XCin�1

z¼0

GZ �M : ð26Þ

Pooling layer: It is linked to the conv layer, and utilized for reducing the spatial

size of the feature map. Thus, average pooling is selected for functioning on each slice

and feature map depth,

aout ¼
ain � Za

�
þ 1; ð27Þ

sout ¼
sin � Zs

�
þ 1: ð28Þ

Activation function: It is used to learn the nonlinear and complicated features for

enhancing the nonlinearity of mined features. The Recti¯ed Linear Unit (ReLU) is

utilized to process the image. The ReLU is given by

ReLUðMÞ ¼ 0; K < 0;

K; K � 0:

�
ð29Þ

Batch normalization: The group to be trained is split into small groups known as

mini-batches to train the model. It attains balance between convergence and eval-

uation complexity.

Residual blocks: It expresses the shortcut association among conv layers. The di-

mension matching factor is adapted to match the input and output, which is given by

N ¼ <ðMÞ þM; ð30Þ
N ¼ <ðMÞ þ �MM : ð31Þ

Linear classi¯er: After terminating the conv layer, the linear classi¯er employs a

procedure for determining noisy pixels with the input image,

N ¼ �N þ �: ð32Þ
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Figure 2 reveals the DRN structure. It assists in discovering the lung nodule

classes.

3.5.2. DRN training using SSSCA

The training process of DRN is carried out with the developed SSSCA. Here, SCA22

is ¯rst developed with the mathematical model using sine and cosine functions. It is

e®ective in making trade-o®s among exploitation and exploration states to discover

improved regions and assists in attaining a global optimal solution. The technique

helps in avoiding the local optima and poses elevated exploration and thereby

addresses the real-world problems. Meanwhile, SSOA21 is motivated by the mim-

icking behavior of the shepherd. SSOA e®ectively balanced the exploitation and

exploration capabilities. Furthermore, SSOA addressed the conventional engineering

problems with enhanced accuracy. In addition, SSOA can determine the optimum

solution with less assessment of some issues. Hence, the integration of SSOA and BA

is done for enhancing the overall performance of the algorithm. The steps present in

the technique are given as follows:

Step 1 (Initialization). The SSOA is ¯xed and the preliminary sheep position is

discovered in a random manner in m-dimensional search space which is given as

U 0
x ¼ Umin þ randðUmax � UminÞ such that x ¼ 1; 2; . . . ; j: ð33Þ

Step 2 (Detection of error). The best solution is determined using the error. It

is considered as a minimization problem for which the best solution is determined.

Fig. 2. Structure of DRN.
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MSE is given by

MSerr ¼
1

k

Xk
f¼1

½� � Y �2; ð34Þ

where 1 < f � k.

Step 3 (Build herds). As per SSOA,21 the sheep are divided into x herds each

having y sheep. Thus l ¼ x� y. For splitting the sheep in each herd, the sorting of all

sheep is done using the errors in ascending order for collecting them in the herd. The

¯rst y sheep are chosen and put arbitrarily in each herd.

Step 4 (Evaluate step size). The step size is evaluated by

�x ¼ �� randðUoUxÞ þ 	 � randðUa � UxÞ; ð35Þ
where � is formulated as

� ¼ �0 �
�0

Maxitn
� itn; ð36Þ

and 	 is formulated as

	 ¼ 	0 �
	max � 	0
Maxitn

� itn: ð37Þ

Step 5 (Evaluate temple solution vector).

The SSOA is e®ective in addressing the global optimization problems. As per

SSOA,21 the temple solution vector is evaluated for each sheep and is given as

U temple
x ¼ U old

x þ �x: ð38Þ
The above equation can be rewritten by substituting the value of step size as

Uðzþ 1Þ ¼ UðzÞ þ �� randðUo � UðzÞÞ þ 	 � randðUa � UðzÞÞ; ð39Þ
Uðzþ 1Þ ¼ UðzÞ½1� �� rand� 	 � randUo þ 	 � randUa�: ð40Þ

The SCA is employed for solving real-world problems, as it averts local optima to

explore the search space for optimum solution. According to SCA,22 the solution

update is modeled as

Uðzþ 1Þ ¼ UðzÞ þ d1 sinðd2Þ � jd3Q� UðzÞj: ð41Þ
Assume QB > UðzÞ, hence the equation is rewritten as

Uðzþ 1Þ ¼ UðzÞ þ d1 sinðd2Þ � ðd3QB� UðzÞÞ; ð42Þ

UðzÞ ¼ Uðzþ 1Þd1 sinðd2Þ � d3QB

1� d1 sinðd2Þ
: ð43Þ

Substituting Eq. (44) into Eq. (40),

Uðzþ 1Þ ¼ Uðzþ 1Þd1 sinðd� 2Þ � d3QB

1� d1 sinðd2Þ
� ½1� �� rand� 	 � rand� þ ½�� randUo þ 	 � randUa�; ð44Þ
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Uðzþ 1Þ ¼ 1

�� randþ 	 � randd1 sinðd2Þ
� ð�randUoð1� d1 sinðd2ÞÞ þ 	randUað1� d1 sinðd2ÞÞ � d1 sinðd2Þ
� d3QB� ½1� �rand� 	rand�Þ: ð45Þ

The ¯nal proposed SSSCA equation is expressed as

Uðzþ 1Þ ¼
ð1� d1 sinðd2ÞÞð�randUo þ 	randUaÞ þ d1 sinðd2Þ

� d3QB½�randþ 	rand� 1�
�� randþ 	 � randd1 sinðd2Þ

: ð46Þ

Step 6 (Re-evaluation of error).

The error is re-computed wherein weights linked with the least error are employed

for training the DRN.

Step 7 (Terminate).

The optimal weights are generated frequently till the highest iteration is reached.

Table 2 provides the pseudo-code of the proposed SSSCA.

The output obtained from the proposed SSSCA-based DRN is denoted by Y that

helps to ¯nd the long nodule classes including GGO, part solid and solid nodules.

4. Results and Discussion

The e®ectiveness of SSSCA-based DRN is evaluated with speci¯city, sensitivity and

testing accuracy by altering the training data and K-fold.

4.1. Experimental setup

The SSSCA-based DRN is processed on Windows 10 OS with 2-GB RAM and Intel

Core processor and is functioned in Matlab.

Table 2. Pseudo-code of SSSCA.

Input: Population U
Output: Optimum solution U �

Begin

Initialize the population U in a random manner

Compute error using Eq. (34)
Build herds

while stop criteria not satis¯ed do

For ðz < zmaxÞ
Evaluate step size using Eq. (35)

Evaluate temple solution vector using Eq. (38)

Update agent and merge solution using Eq. (46)

Update the control parameters using Eqs. (36) and (37)
End for

z ¼ zþ 1

Compute error using Eq. (34)

Return U �
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4.2. Dataset used

The dataset used for the analysis is the Lung Image Database Consortium image

collection (LIDC-IDRI) database.18 It refers to the international resources utilized

for the development, training process and computation of computer-aided design

(CAD) techniques for the discovery and treatment of lung cancer. This database was

developed by the National Cancer Institute (NCI). This database comprises 1 018

cases and is built by seven academic and eight medical imaging institutions.

4.3. Experimental results

Figure 3 reveals the experimental outcomes of the developed SSSCA-based DRN

using a set of original images. The original input images are revealed in Fig. 3(a). The

pre-processed image using ROI extraction and Wiener ¯lter is displayed in Fig. 3(b).

The segmented image is revealed in Fig. 3(c).

(a)

(b)

Fig. 3. Experimental results of the developed SSSCA-based DRN with (a) original input images, (b) pre-

processed image using ROI extraction and Wiener ¯lter and (c) segmented image.
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4.4. Evaluation measures

The designed lung nodule classi¯cation model involves certain measures, which are

illustrated below.

4.4.1. Accuracy

It symbolizes the closeness degree of the computed value to the original value in lung

nodule classi¯cation, and is expressed as

Accuracy ¼ cþ d

cþ dþ eþ f
: ð47Þ

4.4.2. Sensitivity

It refers to the ratio of positives that are detected by the lung nodule classi¯cation

technique and is formulated as

Sensitivity ¼ c

cþ d
: ð48Þ

4.4.3. Speci¯city

It refers to the ratio of negatives determined using the designed model precisely, and

is formulated as

Specificity ¼ d

dþ f
: ð49Þ

4.4.4. F1-score

It is de¯ned as the harmonic mean of the devised approach's recall and precision, and

is formulated by

F1-score ¼
c

cþ 1
2 ðf þ dÞ : ð50Þ

(c)

Fig. 3. (Continued )
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4.5. Performance assessment

The inspection of the developed SSSCA-based DRN using speci¯city, sensitivity and

testing accuracy by altering the training data and K-fold is explained below.

4.5.1. Assessment with training data

Figure 4 presents the assessment results of SSSCA-based DRN by altering the

training data. The assessment of SSSCA-based DRN using testing accuracy is dis-

played in Fig. 4(a). For 60% data, the testing accuracies measured for SSSCA-based

DRN with iterations 10, 20, 30 and 40 are 0.762, 0.796, 0.832 and 0.851. Also, for 90%

data, the testing accuracies produced by SSSCA-based DRN with iterations 10, 20,

30 and 40 are 0.877, 0.909, 0.918 and 0.925. The assessment of SSSCA-based DRN

using sensitivity is displayed in Fig. 4(b). For 60% data, the sensitivities produced by

SSSCA-based DRN with iterations 10, 20, 30 and 40 are 0.786, 0.805, 0.834 and

0.863. Also, for 90% data, the sensitivities produced by SSSCA-based DRN with

iterations 10, 20, 30 and 40 are 0.881, 0.897, 0.902 and 0.932. The assessment of

SSSCA-based DRN using speci¯city is displayed in Fig. 4(c). For 60% data, the

(a) (b)

(c) (d)

Fig. 4. Assessment results of the developed SSSCA-based DRN by altering the training data using (a)

testing accuracy, (b) sensitivity, (c) speci¯city and (d) F1-score.
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speci¯cities produced by SSSCA-based DRN with iterations 10, 20, 30 and 40 are

0.725, 0.751, 0.779 and 0.791. Also, for 90% data, the speci¯cities produced by

SSSCA-based DRN with iterations 10, 20, 30 and 40 are 0.793, 0.804, 0.817 and

0.837. The performance analysis based on the F1-score is provided in Fig. 4(d). The

F1-scores produced by SSSCA-based DRN with iterations 10, 20, 30 and 40 are 0.724,

0.740, 0.765 and 0.784, for 70% training data. Also, for 90% data, the F1-score

produced by SSSCA-based DRN with iterations 10, 20, 30 and 40 are 0.752, 0.778,

0.792 and 0.815. When considering the training percentage, the devised SSSCA-

based DRN attained the highest results at 90% of training data.

4.5.2. Assessment with K-fold

The assessment results of the developed SSSCA-based DRN by altering the K-fold

are revealed in Fig. 5. The assessment of the developed SSSCA-based DRN using

testing accuracy is displayed in Fig. 5(a). For K-fold ¼ 5, the testing accuracies

produced by the developed SSSCA-based DRN with iterations 10, 20, 30 and 40 are

0.773, 0.791, 0.843 and 0.853. Also, for K-fold ¼ 8, the testing accuracies produced

by the developed SSSCA-based DRN with iterations 10, 20, 30 and 40 are 0.855,

(a) (b)

(c) (d)

Fig. 5. Assessment results of the developed SSSCA-based DRN by altering the K-fold using (a) testing

accuracy, (b) sensitivity, (c) speci¯city and (d) F1-score.
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0.876, 0.894 and 0.917. The assessment of the developed SSSCA-based DRN using

sensitivity is displayed in Fig. 5(b). For K-fold ¼ 5, the sensitivities produced by the

developed SSSCA-based DRN with iterations 10, 20, 30 and 40 are 0.761, 0.790,

0.850 and 0.860. Also, for K-fold ¼ 8, the sensitivities produced by the developed

SSSCA-based DRN with iterations 10, 20, 30 and 40 are 0.851, 0.881, 0.905 and

0.922. The assessment of the developed SSSCA-based DRN using speci¯city is dis-

played in Fig. 5(c). For K-fold ¼ 5, the speci¯cities produced by the developed

SSSCA-based DRN with iterations 10, 20, 30 and 40 are 0.690, 0.715, 0.735 and

0.753. Also, forK-fold ¼ 8, the speci¯cities produced by the developed SSSCA-based

DRN with iterations 10, 20, 30 and 40 are 0.774, 0.789, 0.806 and 0.830. Figure 5(d)

depicts the performance analysis based on the F1-score. The F1-scores produced by

SSSCA-based DRN with iterations 10, 20, 30 and 40 are 0.709, 0.721, 0.740 and

0.767, for K-fold ¼ 6. Also, for K-fold ¼ 8, the F1-scores produced by SSSCA-based

DRN with iterations 10, 20, 30 and 40 are 0.768, 0.780, 0.805 and 0.827. When

considering the K-fold, the devised SSSCA-based DRN attained the highest results

at K-fold ¼ 8.

4.6. Comparative methods

The comparison is done with the techniques including CNN,3 DCTþ CNN,4

DTCNN,6 ANN,7 MSDLF8 and the proposed SSSCA-based DRN.

4.7. Comparative assessment

The assessment results of techniques based on speci¯city, sensitivity, F1-score and

testing accuracy by varying the training data andK-fold are given in this subsection.

4.7.1. Assessment with training data

Figure 6 presents the assessment results by altering the training data. The assess-

ment with testing accuracy is revealed in Fig. 6(a). For 60% data, the testing ac-

curacies measured for CNN, DCTþ CNN, DTCNN, ANN, MSDLF and SSSCA-

based DRN are 0.699, 0.706, 0.772, 0.793, 0.827 and 0.851. Likewise, for 90% data,

the testing accuracies produced by CNN, DCTþ CNN, DTCNN, ANN, MSDLF and

SSSCA-based DRN are 0.790, 0.814, 0.854, 0.879, 0.891 and 0.925. The performance

improvements with respect to CNN, DCTþ CNN, DTCNN, ANN and MSDLF of

the developed SSSCA-based DRN using accuracy are 14.594%, 12%, 7.675%, 4.972%

and 3.675%. The assessment using sensitivity is displayed in Fig. 6(b). For 60% data,

the sensitivities produced by CNN, DCTþ CNN, DTCNN, ANN, MSDLF and

SSSCA-based DRN are 0.708, 0.723, 0.764, 0.785, 0.818 and 0.863. Also, for 90%

data, the sensitivities produced by CNN, DCTþ CNN, DTCNN, ANN, MSDLF and

SSSCA-based DRN are 0.789, 0.833, 0.866, 0.889, 0.898 and 0.932. The performance

improvements with respect to CNN, DCTþ CNN, DTCNN, ANN and MSDLF of

the developed SSSCA-based DRN using sensitivity are 15.343%, 10.622%, 7.081%,
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4.613% and 3.648%. The assessment using speci¯city is displayed in Fig. 6(c). For

60% data, the speci¯cities produced by CNN, DCTþ CNN, DTCNN, ANN, MSDLF

and SSSCA-based DRN are 0.636, 0.650, 0.653, 0.692, 0.734 and 0.791. Also, for 90%

data, the speci¯cities evaluated for CNN,DCTþ CNN, DTCNN, ANN, MSDLF and

SSSCA-based DRN are 0.691, 0.703, 0.790, 0.796, 0.809 and 0.837. The performance

improvements with respect to CNN, DCTþ CNN, DTCNN, ANN and MSDLF of

the developed SSSCA-based DRN using speci¯city are 17.443%, 16.009%, 5.615%,

4.898% and 3.345%. The F1-score assessment is given in Fig. 6(d). For 70% data, the

F1-scores produced by CNN, DCTþ CNN, DTCNN, ANN, MSDLF and SSSCA-

based DRN are 0.640, 0.659, 0.687, 0.705, 0.741 and 0.784. Also, for 90% data, the

F1-scores evaluated for CNN, DCTþ CNN, DTCNN, ANN, MSDLF and SSSCA-

based DRN are 0.680, 0.696, 0.777, 0.786, 0.791 and 0.815. The performance

improvements with respect to CNN, DCTþ CNN, DTCNN, ANN and MSDLF of

the developed SSSCA-based DRN using F1-score are 16.64%, 14.64%, 4.72%, 3.61%

and 2.93%.

(a) (b)

(c) (d)

Fig. 6. Assessment results of di®erent techniques by altering the training data using (a) testing accuracy,

(b) sensitivity, (c) speci¯city and (d) F1-score.
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4.7.2. Assessment with K-fold

Figure 7 presents the assessment results by altering theK-fold. The assessment using

testing accuracy is displayed in Fig. 7(a). For K-fold ¼ 5, the testing accuracies

produced by CNN, DCTþ CNN, DTCNN, ANN, MSDLF and the developed

SSSCA-based DRN are 0.692, 0.740, 0.772, 0.800, 0.832 and 0.853. Also, for

K-fold ¼ 8, the testing accuracies produced by CNN, DCTþ CNN, DTCNN, ANN,

MSDLF and the developed SSSCA-based DRN are 0.782, 0.831, 0.855, 0.878, 0.891

and 0.917. The performance improvements with respect to CNN, DCTþ CNN,

DTCNN, ANN and MSDLF of the developed SSSCA-based DRN using accuracy are

14.721%, 9.378%, 6.761%, 4.252% and 2.835%. The assessment with sensitivity is

displayed in Fig. 7(b). For K-fold ¼ 5, the sensitivities produced by CNN,

DCTþ CNN, DTCNN, ANN, MSDLF and the developed SSSCA-based DRN are

0.693, 0.715, 0.756, 0.789, 0.832 and 0.860. Also, for K-fold ¼ 8, the sensitivities

produced by CNN, DCTþ CNN, DTCNN, ANN, MSDLF and the developed

SSSCA-based DRN are 0.799, 0.830, 0.860, 0.896, 0.901 and 0.922. The performance

(a) (b)

(c) (d)

Fig. 7. Assessment results of di®erent techniques by altering the K-fold using (a) testing accuracy, (b)

sensitivity, (c) speci¯city and (d) F1-score.
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improvements with respect to CNN, DCTþ CNN, DTCNN, ANN and MSDLF of

the developed SSSCA-based DRN using sensitivity are 13.340%, 9.978%, 6.724%,

2.819% and 2.277%. The assessment using speci¯city is displayed in Fig. 7(c). For

K-fold ¼ 5, the speci¯cities produced by CNN, DCTþ CNN, DTCNN, ANN,

MSDLF and the developed SSSCA-based DRN are 0.608, 0.621, 0.655, 0.686, 0.704

and 0.753. Also, for K-fold ¼ 8, the speci¯cities produced by CNN, DCTþ CNN,

DTCNN, ANN, MSDLF and the developed SSSCA-based DRN are 0.685, 0.723,

0.770, 0.782, 0.796 and 0.830. The performance improvements with respect to CNN,

DCTþ CNN, DTCNN, ANN and MSDLF of the developed SSSCA-based DRN

using speci¯city are 17.469%, 12.891%, 7.228%, 5.783% and 4.096%. The F1-score

assessment is depicted in Fig. 7(d). For K-fold ¼ 6, the F1-scores produced by CNN,

DCTþ CNN, DTCNN, ANN, MSDLF and SSSCA-based DRN are 0.616, 0.649,

0.684, 0.739, 0.752 and 0.767. Also, for K-fold ¼ 8, the F1-scores evaluated for CNN,

DCTþ CNN, DTCNN, ANN, MSDLF and SSSCA-based DRN are 0.679, 0.715,

0.750, 0.778, 0.785 and 0.827. The performance improvements with respect to CNN,

DCTþ CNN, DTCNN, ANN and MSDLF of the developed SSSCA-based DRN

using F1-score are 17.95%, 13.55%, 9.41%, 5.99% and 5.09%.

4.8. Comparative discussion

Table 3 reveals the assessment by varying the training data and K-fold. Using

training data, an elevated testing accuracy of 0.925 is produced by the developed

SSSCA-based DRN, whereas the accuracies produced by CNN, DCTþ CNN,

DTCNN, ANN and MSDLF are 0.790, 0.814, 0.854, 0.879 and 0.891. An elevated

sensitivity of 0.932 is measured for the developed SSSCA-based DRN whereas the

sensitivities measured for CNN, DCT+CNN, DTCNN, ANN and MSDLF are 0.789,

0.833, 0.866, 0.889 and 0.898. The highest speci¯city of 0.837 is measured for the

developed SSSCA-based DRN, whereas the speci¯cities measured for CNN,

DCTþ CNN, DTCNN, ANN and MSDLF are 0.691, 0.703, 0.790, 0.796 and 0.809.

The maximum F1-score of 0.815 is measured for the developed SSSCA-based DRN,

whereas the F1-scores measured for CNN, DCTþ CNN, DTCNN, ANN and MSDLF

are 0.680, 0.696, 0.777, 0.786 and 0.791. Using K-fold, the elevated testing accuracy

Table 3. Comparison of acoustics for frequencies for the piston–cylinder problem.

Data Metric CNN DCTþ CNN DTCNN ANN MSDLF

Proposed

SSSCA-based

DRN

Training data Testing accuracy 0.790 0.814 0.854 0.879 0.891 0.925

Sensitivity 0.789 0.833 0.866 0.889 0.898 0.932
Speci¯city 0.691 0.703 0.790 0.796 0.809 0.837

F1-score 0.680 0.696 0.777 0.786 0.79 0.815

K-fold Testing accuracy 0.782 0.831 0.855 0.878 0.891 0.917

Sensitivity 0.799 0.830 0.860 0.896 0.901 0.922
F1-score 0.680 0.696 0.777 0.786 0.791 0.815
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of 0.917, sensitivity of 0.922, speci¯city of 0.830 and F1-score of 0.827 are measured

for the developed SSSCA-based DRN.

5. Conclusion

An optimization-driven deep model is devised to classify the nodules of the lung. Pre-

processing is done by the extraction of ROI and adaptive Wiener ¯lter to eliminate

noise. Segmentation is performed with the DeepJoint model wherein the distance is

computed using the congruence coe±cient for mining the segments. The discovery of

nodules is done with the grid-based scheme. Then, the mining of essential features is

performed for improved processing. Here, the features like GBP features, Texton

features, short axis and long axis, barycenter di®erence, perimeter and area, number

of slices, volume and statistical features are considered. The lung nodule classi¯ca-

tion is done with DRN. The DRN training is performed with the proposed SSSCA.

The proposed SSSCA is developed by integrating SCA and SSOA. Here, the pro-

posed SSSCA-based DRN is used to classify the lung nodules as part solid, solid

nodules and GGO. The proposed SSSCA-based DRN outperformed with the highest

testing accuracy of 92.5%, sensitivity of 93.2%, speci¯city of 83.7% and F1-score of

81.5%. In the future, other databases can be utilized for checking the feasibility of the

proposed model.
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